SYLLABUS & COURSE INFORMATION

PUBH 6450, SECTION 001

Biostatistics I
Fall 2019

COURSE & CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Credits:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting Day(s):</td>
<td>Tuesdays and Thursdays</td>
</tr>
<tr>
<td>Meeting Time:</td>
<td>1:25-3:20 pm</td>
</tr>
<tr>
<td>Meeting Place:</td>
<td>PWB</td>
</tr>
</tbody>
</table>

Instructor: Marta Shore
Email: shore007@umn.edu
Office Hours: Tu 12:00-1:00 pm, Th 3:30-4:30 pm
Office Location: Mayo A449

TA: Jennifer Czachura
Email: czach005@umn.edu
Lab: 002 Tuesday 3:35 – 4:25 pm
Office Hours: Wednesday 12:00-1:00 pm

TA: Xiang He
Email: hexxx856@umn.edu
Lab: 003 Tuesday 5:45 – 6:35 pm
Office Hours: Friday 12:00 – 1:00 pm

TA: Michelle Sonnenberger
Email: sonne110@umn.edu
Lab: 004 Wednesday 9:05 – 9:55 am
Office Hours: Thursday 12:00-1:00 pm

TA: Nirali Patel
Email: patel679@umn.edu
Lab: 005 Wednesday 12:20 – 1:10 pm
Office Hours: Friday 11:00 am – 12:00 pm

TA: Jingxin Lei
Email: lei00011@umn.edu
Lab: 006 Thursday 10:10 – 11 am
Office Hours: Monday 9:30 am – 10:30 am

TA: Katrina Harper
Email: harpe165@umn.edu
Lab: 007 Thursday 12:20 – 1:10 pm
Office Hours: Wednesday 2:00-3:00 pm

All labs take place in Mayo C381
All TA office hours take place in Mayo A446
Office Hours (Mayo A446 unless otherwise noted)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Jingxin 9:30 – 10:30 a.m. Mayo A446</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Marta 12 – 1 p.m. Mayo A449</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Jennifer 12:00 – 1:00 p.m. Mayo A446</td>
<td>Katrina 2:00 – 3:00 p.m. Mayo A446</td>
</tr>
<tr>
<td>Thursday</td>
<td>Michelle 12:00 – 1:00 p.m. Mayo A446</td>
<td>Marta 3:30 – 4:30 p.m. Mayo A449</td>
</tr>
<tr>
<td>Friday</td>
<td>Nirali 11:00 a.m. – 12:00 p.m. Mayo A446</td>
<td>Xiang 12:00 – 1:00 p.m. Mayo A446</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

In this course, we will explore the basic concepts of exploratory data analysis and statistical inference, including: descriptive statistics, random variables and their distributions, point/interval estimation for means, proportions, and odds/risk, hypothesis testing, ANOVA, simple regression/correlation, multiple regression, and nonparametric methods (if possible). We will focus on health science applications using output from statistical packages.

COURSE PREREQUISITES

College Algebra (e.g. Math 1031), health science grad student, or instructor permission.

COURSE GOALS & OBJECTIVES

By the end of the course, students should have a basic understanding of the fundamentals of biostatistical methods. This includes:

- Summarizing data with numerical measures and graphs
- Basic concepts of randomness and data distributions
- Point/Interval estimation for categorical and continuous outcomes
- Hypothesis testing for categorical and continuous outcomes
- Simple and multiple linear regression
- Basic SAS and/or R programming language skills

METHODS OF INSTRUCTION AND WORK EXPECTATIONS

Course Workload Expectations

PubH 6450: Biostatistics I is a 4-credit course. The University expects that for each credit, you will spend a minimum of three hours per week attending class, reading, studying, and completing assignments, etc. over the course of a 15-week term. Thus, this course requires approximately 180 hours of effort spread over the course of the term in order to earn an average grade.

Methods of Instruction

The course will utilize both traditional lectures and active learning experiences. Here is the breakdown of the weekly work expectations:

- **Beginning of the week**: Students will be expected to prepare for each class meeting by reading from the textbook.
- **In-class on Day 1 of the week**: The first part of class will be devoted to working collaboratively in a small group on the quiz that was completed at the end of the previous week (see more information below). Because of this, it will be essential that you attend class on Day 1 of the week so that you can contribute to your group’s learning. Groups will be required to submit their answers via Moodle. The remaining time will be devoted to learning the topic of the week via a lecture.
- **Between Day 1 and Day 2**: Students are expected to look over the lectures and readings for the week and prepare any questions they have. In addition, students are expected to attend lab and learn the new programming skills related to the topic of the week. After students attend lab, they are encouraged to download the Problem Set and review the questions in preparation for day 2 of class.
- **In-class on Day 2 of the week**: The first part of class will be devoted to working on a Problem Set that allows you to apply and further solidify your knowledge of the concept and of analyzing the data via your chosen software while having instructors available for assistance. The second part of class will include any clarifications on the week’s material, and any additional. The remaining time will be devoted to clarifying or expanding on the topics of the week.
- **After class on day 2**: Students will be working collaboratively (with guidance from instructors and TAs) to create the answer key for the Problem Set. Your learning experience will be thus dependent--to some extent--on your classmates and vice versa. Each student will be expected to contribute at least once to the key each week. Your contribution to the collaborative key will be due each Saturday by 5:00pm.
- **At the end of the week**: An online quiz covering the material of the week, as well as concepts from earlier weeks, will be due each Sunday by 11:55pm. Students will be expected to complete this end-of-week quiz independently.
• **The first 20 minutes of the first class the following week:** Students will sit with their randomly assigned groups of 4 to retake the quiz collaboratively. The questions will all be multiple choice, matching, or true/false. At the end of the 20 minutes, the instructor will look at the results of the quiz and go over any questions that were missed by several groups.

Lab
In the weekly lab sessions, you will learn how to analyze data via your chosen software (SAS or R). Your lab TA will be on hand to help you as you work through the lab documents for your chosen software. Within each lab document, there will be *Guided Questions* that ask you to interpret the output from the code in the document. In addition, there will be *Challenge* questions that try to push you in your coding abilities and may force you to utilize external resources (e.g., internet) to answer the question.

Projects
There will be two projects within the semester that assess your ability to analyze data via your chosen software and interpret the results. Students are expected to complete these projects independently, **except** where the instructors specifically note collaboration is acceptable.

Computing
The course includes examples of data analysis from SAS and R. You will need access to SAS or R to complete your assignments.

Technology
You will use the following technology tools in this course. Please make yourself familiar with them.
- Google Docs for the activity collaborative keys. Training is available via OIT.
- Canvas for the course website. Lectures, problem sets, quizzes, labs, datasets, and additional reading will be on the site.

Learning Community
School of Public Health courses ask students to discuss frameworks, theory, policy, and more, often in the context of past and current events and policy debates. Many of our courses also ask students to work in teams or discussion groups. We do not come to our courses with identical backgrounds and experiences and building on what we already know about collaborating, listening, and engaging is critical to successful professional, academic, and scientific engagement with topics.

In this course, students are expected to engage with each other in respectful and thoughtful ways.

In group work, this can mean:
- Setting expectations with your groups about communication and response time during the first week of the semester (or as soon as groups are assigned) and contacting the TA or instructor if scheduling problems cannot be overcome.
- Setting clear deadlines and holding yourself and each other accountable.
- Determining the roles group members need to fulfill to successfully complete the project on time.
- Developing a rapport prior to beginning the project (what prior experience are you bringing to the project, what are your strengths as they apply to the project, what do you like to work on?)

In group discussion, this can mean:
- Respecting the identities and experiences of your classmates.
- Avoid broad statements and generalizations. Group discussions are another form of academic communication and responses to instructor questions in a group discussion are evaluated. Apply the same rigor to crafting discussion posts as you would for a paper.
- Consider your tone and language, especially when communicating in text format, as the lack of other cues can lead to misinterpretation.

Like other work in the course, all student to student communication is covered by the Student Conduct Code (https://z.umn.edu/studentconduct).

COURSE TEXT & READINGS

The required textbook for the course is **Diez, Barr, Cetinkaya-Rundel. (2016). *OpenIntro Statistics* (3rd or 4th ed.).**
- This book is free for download or available for a very low cost through the site https://www.openintro.org.

Other resources:
- **Various online resources**

The chapters or sections will be listed in a particular week and are available free to download through the University Library system, up to 60 pages, or to check out (eBook) for a short period of time.
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Readings</th>
<th>Activities/Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1
September 3-8</td>
<td>INTRODUCTION & SAMPLING</td>
<td>Textbook Reading:
OpenIntro Statistics
• Third Edition:
 o Chapter 1.1: Case Study: Using Stents to Prevent Strokes
 o Chapter 1.2: Data Basics
 o Chapter 1.3: Overview of Data Collection Principles
 o Chapter 1.4.2: Four Sampling Methods
• Fourth Edition:
 o 1.1: Case Study: Using Stents to Prevent Strokes
 o 1.2: Data Basics
 o 2.1: Examining Numerical Data
 o 2.2: Considering Categorical Data
 o 2.3: Case study: Malaria Vaccine (OPTIONAL)</td>
<td>• Lab
• Week 1 Individual Quiz (due Wednesday, September 4 @ 11:55 pm)
• Week 1 Group Quiz (in-class Thursday)
• Problem Set Activity (in-class Thursday)
• Homework (due Friday, September 6 @ 11:55 pm)
• Contribution to Problem Set Collaborative Key (due Saturday, September 7 @ 5 pm)</td>
</tr>
<tr>
<td>Week 2
September 9-15</td>
<td>DATA SUMMARIES, RANDOM VARIABLES, & POPULATION DISTRIBUTIONS</td>
<td>Textbook Reading:
OpenIntro Statistics
• Third Edition:
 o Chapter 1.6: Examining Numerical Data
 o Chapter 1.7: Considering Categorical Data
 o Chapter 1.8: Case Study: Gender Discrimination (OPTIONAL)
 o Chapter 2.5: Continuous Distributions
 o Chapter 3: Distributions of Random Variables (except 3.3.2 & 3.5)
• Fourth Edition:
 o 1.3: Sampling Principles and Strategies (except 1.3.4)
 o 3.5: Continuous Distributions
 o 4.1: Normal Distribution
 o 4.3: Binomial Distribution</td>
<td>• Lab
• Problem Set activity (in-class Thursday)
• Contribution to Problem Set Collaborative Key (due Saturday, September 14 @ 5 pm)
• Week 2 Individual Quiz (due Sunday, September 15 @ 11:55 pm)</td>
</tr>
<tr>
<td>Week 3
September 16-22</td>
<td>CONFIDENCE INTERVALS FOR A PROPORTION</td>
<td>Textbook Reading:
OpenIntro Statistics
• Third Edition:
 o Chapter 4: Foundations for Inference (except 4.3 & 4.5.2)
 o Chapter 6.1: Inference for a single proportion (except 6.1.3 & 6.1.4)
• Fourth Edition:
 o 5.1: Point Estimates and Sampling Variability
 o 5.2: Confidence Intervals for a Sample Proportion
 o 6.1: Inference for a Single Proportion
Online Resources:
https://courses.lumenlearning.com/boundless-statistics/chapter/sampling-distributions/</td>
<td>• Week 2 Group Quiz (in-class Tuesday)
• Lab
• Problem Set activity (in-class Thursday)
• Contribution to Problem Set Collaborative Key (due Saturday, September 21 @ 5:00 pm)
• Week 3 Individual Quiz (due Sunday September 22 @ 11:55 pm)</td>
</tr>
</tbody>
</table>
| Week 4 | CONFIDENCE INTERVALS FOR A MEAN | Textbook Reading: OpenIntro Statistics (OIS)
- Third Edition
 - Chapter 5.1: One-sample means with the \(t \)-distribution (except 5.1.5)
- Fourth Edition
 - 7.1: One-Sample Means with the \(t \)-distribution (except 7.1.5)
Online Resources:
- http://my.ilstu.edu/~wjschne/138/Psychology138Lab10.html |
- Week 3 Group Quiz (in-class Tuesday)
- Lab
- Problem Set activity (in-class Thursday)
- Contribution to Problem Set Collaborative Key (due Saturday, September 28 @ 5:00p)
- Week 3 Individual Quiz (due Sunday, September 29 @ 11:55p) |
| --- | --- | --- | --- |
| Week 5 | INTRODUCTION TO HYPOTHESIS TESTING | Textbook Reading: OpenIntro Statistics
- Third Edition
 - Chapter 4.3: Hypothesis Testing
 - Chapter 4.5.2: Hypothesis Testing for Nearly Normal Point Estimates
 - Chapter 5.1.5: One sample \(t \)-tests
 - Chapter 5.2: Paired data
- Fourth Edition
 - 5.3: Hypothesis testing (read for structure only)
 - 7.1.5: One Sample \(t \)-tests
 - 7.2: Paired Data |
- Week 4 Group Quiz (in-class Tuesday)
- Lab
- Problem Set activity (in-class Thursday)
- Contribution to Problem Set Collaborative Key (due Saturday, October 5 @ 5:00p)
- Week 4 Individual Quiz (due Sunday, October 6 @ 11:55p) |
| Week 6 | INFERENTIAL METHODS FOR COMPARING MEANS | Textbook Reading: OpenIntro Statistics
- Third Edition
 - Chapter 5.3: Difference of Two Means
- Fourth Edition
 - Chapter 7.3: Difference of Two Means |
- Week 5 Group Quiz (in-class Tuesday)
- Lab
- Problem Set activity (in-class Thursday)
- Contribution to Problem Set Collaborative Key (due Saturday, October 12 @ 5:00p)
- Week 6 Individual Quiz (due Sunday, October 13 @ 11:55p) |
| Week 7 | STUDY DESIGN & MORE SAMPLING | Textbook Readings: OpenIntro Statistics
- Third Edition
 - Chapter 1.4.1: Observational Studies
 - Chapter 1.5: Experiments
 - Chapter 5.4: Power Calculations for a Difference of Means
- Fourth Edition
 - Chapter 1.3.4: Observational Studies
 - Chapter 1.4: Experiments
 - Chapter 7.4: Power Calculations for a Difference of Means
Essentials of Biostatistics in Public Health (EBPH)
- Chapter 8.1: Issues in Estimating Sample Size for CI Estimates |
- Week 6 Group Quiz (in-class Tuesday)
- Lab
- Problem Set activity (in-class Thursday)
- Contribution to Problem Set Collaborative Key (due Saturday, October 19 @ 5:00p)
- Week 7 Individual Quiz (due Sunday, October 20 @ 11:55p) |
| Week 8 | PROJECT 1 |
- Week 7 Group Quiz (in-class Tuesday)
- Project 1 (due Saturday, October 26 @ 11:55p) |
| Week 9
October 28-
November 3 | ANOVA | **Textbook Reading:**
OpenIntro Statistics
- Third Edition
 - Chapter 5.5: Comparing Many Means with ANOVA
- Fourth Edition
 - Chapter 7.5: Comparing Many Means with ANOVA | **Lab**
Problem Set activity (in-class Thursday)
Contribution to Problem Set Collaborative Key (due Saturday, November 2 @ 5:00p)
Week 9 Individual Quiz (due Sunday, November 3 @ 11:55p) |
| --- | --- | --- |
| **Week 10
November 4-10** | COMPARING CATEGORICAL DATA IN 2x2 TABLES: ODDS RATIOS AND RELATIVE RISKS | **Textbook Readings:**
Essentials of Biostatistics in Public
- Chapter 3.4: Comparing the Extent of Disease Between Groups
- Chapter 6.6: Confidence Intervals for Two Independent Samples, Dichotomous Outcome
Journal Article:
Lab
Problem Set activity (in-class Thursday)
Contribution to Problem Set Collaborative Key (due Saturday, November 9 @ 5:00p)
Week 10 Individual Quiz (due Sunday, November 10 @ 11:55p) |
| **Week 11
November 11-17** | HYPOTHESIS TESTING FOR COMPARING TWO OR MORE CATEGORIES | **Textbook Readings:**
OpenIntro Statistics
- Third Edition
 - Chapter 6.3: Testing for Goodness of Fit using Chi-square
 - Chapter 6.4: Testing for Independence in Two-way Tables
- Fourth Edition
 - Chapter 6.3: Testing for Goodness of Fit using Chi-square: Observational Studies
 - Chapter 6.4: Testing for Independence in Two-way Tables
EBPH
- Chapter 7.7: Tests with Two Independent Samples, Dichotomous Outcome
- Chapter 7.9: Tests for Two or More Independent Samples, Categorical & Ordinal Outcomes | **Week 10 Group Quiz (in-class Tuesday)**
Lab
Problem Set activity (in-class Thursday)
Contribution to Problem Set Collaborative Key (due Saturday, November 16 @ 5:00p)
Week 11 Individual Quiz (due Sunday, November 17 @ 11:55p) |
| **Week 12
November 18-24** | CORRELATION & SIMPLE LINEAR REGRESSION | **Textbook Reading:**
OpenIntro Statistics
- Third Edition
 - Chapter 7: Introduction to Linear Regression (except 7.2.2 & 7.4)
- Fourth Edition
 - Chapter 8: Introduction to Linear Regression (except 8.2.3 & 8.4) | **Week 11 Group Quiz (in-class Tuesday)**
Lab
Problem Set activity (in-class Thursday)
Contribution to Problem Set Collaborative Key (due Saturday, November 23 @ 5:00p)
Week 12 Individual Quiz (due Sunday, November 24 @ 11:55p) |
| Week 13 November 25-December 1 | INFERENCE FOR SIMPLE LINEAR REGRESSION | Textbook Reading:
OpenIntro Statistics
- Third Edition
 - Chapter 7.2.2: Conditions for the Least Squares Line
 - Chapter 7.4: Inference for Linear Regression
- Fourth Edition
 - Chapter 8.2.3: Conditions for the Least Squares Line
 - Chapter 8.4: Inference for Linear Regression |
- Week 12 Group Quiz (in-class Tuesday)
- Lab (Can attend any session)
- Contribution to Problem Set Collaborative Key (by December 1 @ 11:55p) |
|---|---|---|
| Week 14 December 2-8 | MULTIPLE LINEAR REGRESSION | Textbook Reading:
- OIS
- Third Edition
 - Chapter 8: Multiple & Logistic Regression (except 8.2.2, 8.2.3, & 8.4)
- Fourth Edition
 - Chapter 9: Multiple & Logistic Regression (except 9.2.2, 9.2.3, & 9.4) |
- Group Activity (in-class Tuesday)
- Lab
- Problem Set activity (in-class Thursday)
- Contribution to Problem Set Collaborative Key (due Saturday, December 7 @ 5:00p)
- Week 14 Individual Quiz (due Sunday, December 8 @ 11:55p) |
| Week 15 December 9-15 | PROJECT 2 |
- Week 14 Group Quiz (in-class Tuesday)
- Project 2 (due Sunday, December 15 @ 11:55p) |
SPH AND UNIVERSITY POLICIES & RESOURCES

The School of Public Health maintains up-to-date information about resources available to students, as well as formal course policies, on our website at www.sph.umn.edu/student-policies/. Students are expected to read and understand all policy information available at this link and are encouraged to make use of the resources available.

The University of Minnesota has official policies, including but not limited to the following:

- Grade definitions
- Scholastic dishonesty
- Makeup work for legitimate absences
- Student conduct code
- Sexual harassment, sexual assault, stalking and relationship violence
- Equity, diversity, equal employment opportunity, and affirmative action
- Disability services
- Academic freedom and responsibility

Resources available for students include:

- Confidential mental health services
- Disability accommodations
- Housing and financial instability resources
- Technology help
- Academic support

EVALUATION & GRADING

Grading is determined by:

- **Weekly work** (Total: 68%)
 - Homework from week 1 (2%)
 - Active and timely participation in the Problem Set Collaborative Keys (18%)
 - Quizzes (Total: 48%)
 - Individual, which includes the first week homework (36%)
 - Group, which includes group activity (12%)
- **Projects** (Total: 32%)
 - Project 1 (14%)
 - Project 2 (18%)

Grading Scale

The University uses plus and minus grading on a 4.000 cumulative grade point scale in accordance with the following, and you can expect the grade lines to be drawn as is outlined in the table following:

- A = achievement that is outstanding relative to the level necessary to meet course requirements.
- B = achievement that is significantly above the level necessary to meet course requirements.
- C = achievement that meets the course requirements in every respect.
- D = achievement that is worthy of credit even though it fails to meet fully the course requirements.
- F = failure because work was either (1) completed but at a level of achievement that is not worthy of credit or (2) was not completed and there was no agreement between the instructor and the student that the student would be awarded an I (Incomplete).
- S = achievement that is satisfactory, which is equivalent to a C- or better
- N = achievement that is not satisfactory and signifies that the work was either 1) completed but at a level that is not worthy of credit, or 2) not completed and there was no agreement between the instructor and student that the student would receive an I (Incomplete).
<table>
<thead>
<tr>
<th>% In Class</th>
<th>Grade</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 - 100%</td>
<td>A</td>
<td>4.000</td>
</tr>
<tr>
<td>90 – 92.99%</td>
<td>A-</td>
<td>3.667</td>
</tr>
<tr>
<td>87 – 89.99%</td>
<td>B+</td>
<td>3.333</td>
</tr>
<tr>
<td>83 – 86.99%</td>
<td>B</td>
<td>3.000</td>
</tr>
<tr>
<td>80 – 82.99%</td>
<td>B-</td>
<td>2.667</td>
</tr>
<tr>
<td>77 – 79.99%</td>
<td>C+</td>
<td>2.333</td>
</tr>
<tr>
<td>73 – 76.99%</td>
<td>C</td>
<td>2.000</td>
</tr>
<tr>
<td>70 – 72.99%</td>
<td>C-</td>
<td>1.667</td>
</tr>
<tr>
<td>67 – 69.99%</td>
<td>D+</td>
<td>1.333</td>
</tr>
<tr>
<td>63 – 66.99%</td>
<td>D</td>
<td>1.000</td>
</tr>
<tr>
<td>< 62.99%</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation/Grading Policy</th>
<th>Evaluation/Grading Policy Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholastic Dishonesty, Plagiarism, Cheating, etc.</td>
<td>The goal of this course is to enable students to read and interpret statistical results in the primary literature. We expect that students will complete all end-of-week quizzes INDEPENDENTLY, without assistance from any other people. If we have any reason to suspect that a student gave assistance on an end-of-week quiz to another student or received assistance on an end-of-week quiz from another student or a person outside the class, all students involved will receive a score of zero on that quiz. If we believe that scholastic dishonesty has occurred, we are required by the University to report the incident to the Office of Community Standards (https://communitystandards.umn.edu/).

You are expected to do your own academic work and cite sources as necessary. Failing to do so is scholastic dishonesty. Scholastic dishonesty means plagiarizing; cheating on assignments or examinations; engaging in unauthorized collaboration on academic work; taking, acquiring, or using test materials without faculty permission; submitting false or incomplete records of academic achievement; acting alone or in cooperation with another to falsify records or to obtain dishonestly grades, honors, awards, or professional endorsement; altering, forging, or misusing a University academic record; or fabricating or falsifying data, research procedures, or data analysis (As defined in the Student Conduct Code). For additional information, please see https://z.umn.edu/dishonesty.

The Office for Student Conduct and Academic Integrity has compiled a useful list of Frequently Asked Questions pertaining to scholastic dishonesty: https://z.umn.edu/integrity.

If you have additional questions, please clarify with your instructor. Your instructor can respond to your specific questions regarding what would constitute scholastic dishonesty in the context of a particular class-e.g., whether collaboration on assignments is permitted, requirements and methods for citing sources, if electronic aids are permitted or prohibited during an exam.

Indiana University offers a clear description of plagiarism and an online quiz to check your understanding (http://z.umn.edu/iuplagiarism).</td>
</tr>
<tr>
<td>Late Assignments</td>
<td>This course covers a large amount of material in a short time. The group and class activities depend on the active and timely participation of all students. Therefore late assignments or quizzes will not be accepted. For every day the Project assignment is late, you will be docked 20% of the grade.</td>
</tr>
</tbody>
</table>
CEPH COMPETENCIES

<table>
<thead>
<tr>
<th>Competency</th>
<th>Learning Objectives</th>
<th>Assessment Strategies*</th>
</tr>
</thead>
</table>
| Analyze quantitative and qualitative data using biostatistics, informatics, computer-based programming and software, as appropriate. | **Descriptive and Graphical Summaries**
• Create summary statistics, tables, and graphs are appropriate for each variable type (e.g., categorical variable(s): bar plot, count, proportion, 2x2 table, risk, odds, odds ratio, relative risk, difference in proportions; continuous variable(s): histogram, boxplot, mean, median, SD, IQR, difference in means) via your chosen software.
Confidence Intervals
• Calculate a confidence interval for a population parameter (e.g., mean(s), relative risk, odds ratio) from data or summary statistics via your chosen software.
Hypothesis Testing
• Identify situations when a particular statistical test would be used (e.g., one, paired, and two-sample t-test; Chi-squared test; Fisher’s exact test; McNemar’s test; ANOVA) and carry out the tests via your chosen software.
• Be aware of some of the statistical analysis options that exist if your sample is from a severely non-normal population and carry out the analyses via your chosen software.
Regression
• Create a scatterplot via your chosen software to assess the relationship between variables.
• Identify situations when a particular statistical regression method would be used (e.g., simple linear regression, multiple linear regression, logistic regression, proportional hazards regression).
• Calculate the correlation or the fitted regression coefficients to obtain slope values (for simple or multiple regression) for each predictor via your chosen software.
• Create diagnostic plots via your chosen software to assess how well the model fits the data. | Projects |
| Interpreting results of data analysis for public health research, policy or practice. | **Descriptive and Graphical Summaries**
• Recognize the variable type, categorical or continuous.
• Distinguish between the standard deviation (SD or s) and the standard error of the mean (SE or SEM).
• Interpret summary statistics, tables, and graphs for each variable type (e.g., categorical variable(s): bar plot, count, proportion, 2x2 table, risk, odds, odds ratio, relative risk; continuous variable(s): histogram, boxplot, mean, median, SD, IQR, difference in means).
• State the limitations of the commonly-used measures of center and spread.
• Interpret a Z-score value.
• Define screening test summary statistics (e.g., prevalence, sensitivity, specificity, false positive, false negative, PPV, NPV) and correctly interpret them.
• Explain how the screening test summary statistics are related to each other.
Confidence Intervals
• Explain the purpose of a confidence interval and meaning of the confidence level.
• Make a conclusion about the significance of a result, based off of the confidence interval (e.g., for a mean, for a proportion, for a difference in means, for an OR, for a RR, for a slope). | Weekly quizzes |
Hypothesis testing
- Know the terminology of hypothesis testing (e.g., null hypothesis, alternative hypothesis, test statistic, sampling distribution of the test statistic, p-value, false positive result, false negative result, Type I error, Type II error, power).
- For a particular statistical test, state the appropriate null and alternative hypotheses (e.g., one, paired, and two-sample t-test; Chi-squared test; Fisher’s exact test; McNemar’s test; ANOVA).
- For a particular statistical test, make a conclusion based off of the p-value and a significance level (e.g., one, paired, and two-sample t-test; log-rank test; Chi-squared test; Fisher’s exact test; McNemar’s test; ANOVA).
- Recognize situations in which multiple comparisons may be an issue.
- Explain the consequences of failing to properly account for multiple comparisons.
- Explain the purpose of post-hoc tests following ANOVA and interpret the results.
- Explain the difference between statistical significance and clinical/practical significance.

Regression
- Know what it means to say that two variables are “associated”.
- Interpret statistics (correlation or fitted coefficients) from regression methods and make a conclusion from its confidence interval or p-value (e.g., simple linear regression, multiple linear regression).
- Write down the equation for a regression model and describe what each parameter means (e.g., simple linear regression, multiple linear regression).
- Interpret both the diagnostic plots and the model R² value.

<table>
<thead>
<tr>
<th>Communicate audience-appropriate public health content, both in writing and through oral presentation</th>
<th>Complete a data analysis project by analyzing data via their chosen software and interpreting the results.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis testing</td>
<td>Projects</td>
</tr>
</tbody>
</table>

Assessment Descriptions

Weekly quizzes
The weekly quizzes are intended to assess what the students have learned both from the readings and lectures and from the activities and discussions as outlined in the unit learning objectives. The questions are both multiple-choice and short essay format. During the quizzes, students are encouraged to consult the textbook and the course materials, particularly the completed activity worksheets and any notes you may have made on lectures or other content, but they may not consult with other people during the individual attempt on the quiz. The group attempt on the same quiz occurs the first class period after the due date of the quiz. The group quiz is intended to further solidify the concepts by forcing students to discuss the questions and come to a consensus on the answers. Students are encouraged to check all of the forums and collaborative keys for any comments or clarifications from the instructor *before* beginning the quizzes.

Projects
The projects are intended to assess students’ ability to analyze the data via their chosen software and interpret the results. The projects are more comprehensive in that they assess students’ ability to integrate the concepts and programming from multiple weeks, apply their knowledge to a new scenario, and evaluate the results based on the output from the software. Students are given questions with minimal direction on the type of summary or inferential method to assess their ability to identify and use the concepts and programming learned in the course. The projects must be completed independently, **except** where the instructors specifically note collaboration is acceptable.