BIOSTATISTICS

WHAT DO BIOSTATISTICIANS DO?
Biostatisticians develop and apply data analysis tools that drive biomedical research. They are key members of research teams in every field of biomedicine including neuroscience, genetics/genomics, cancer, heart disease, HIV, and mental health.

Biostatisticians:
- Develop and apply new statistical methods.
- Collaborate with biomedical researchers to plan, design, and analyze clinical and population studies.
- Act as consultants for government, industry, and legal proceedings.
- Teach and train the next generation of biostatisticians.

BIOSTATISTICIANS FIND ANSWERS TO SOME OF THE TOUGHEST SCIENTIFIC QUESTIONS, INCLUDING:
- **Imaging:** What brain regions are most active/suppressed in individuals with clinical depression?
- **Emerging infectious diseases:** What are the long-term consequences of the Ebola Virus Disease?
- **Statistical genetics:** Which combinations of genes put you at highest risk for heart disease?
- **Tobacco regulatory science:** Would reducing the nicotine content of cigarettes reduce nicotine exposure and dependence?

DEGREE OPTIONS
The School of Public Health offers master’s (MS) and doctoral (PhD) degrees in Biostatistics.

ADVANTAGES OF THE PROGRAM
- **Highly ranked.** Biostatistics at the UMN School of Public Health is ranked #9 in the country by U.S. News and World Report.
- **Supportive environment.** With a student-to-faculty ratio of 3:1 (less than 2:1 for PhD students), class sizes are small and faculty are invested in the success of each student.
- **Great place to be.** Minneapolis and St. Paul —the 16th largest metropolitan area in the U.S. with a population of more than 3.5 million—is vibrant, diverse, and widely recognized for its affordability and high quality of life.

Earn your degree from internationally-recognized leaders in the development and application of statistical methods for addressing important challenges in medicine and public health.
Abhirup Datta (Biostatistics, PhD ’16) is currently an associate professor in Biostatistics at John’s Hopkins Bloomberg School of Public Health. As a doctoral student at University of Minnesota (UMN), Abhirup was a member of a UMN team who developed a new statistical model designed to use global plant data to accurately estimate the amount of greenery across the Earth and its effects on the environment. The model will be used to produce highly detailed maps projecting various climate change scenarios associated with plant coverage. (Abhirup is pictured here with Michael T. Osterholm, UMN School of Public Health professor and director, Center for Infectious Disease Research and Policy)